Article ID Journal Published Year Pages File Type
5738565 Neuroscience Letters 2017 6 Pages PDF
Abstract

•We analyzed gene expression in the Cadps2 KO cerebellum with a GeneChip microarray.•Significant differential expression was observed in 5.34% of genes on the GeneChip.•Expression of many secretory proteins was changed in the Cadps2 KO cerebellum.•The neurotrophin signaling pathway was impaired in the Cadps2 KO cerebellum.

In the mouse cerebellum, Ca2+-dependent activator protein for secretion 2 (CADPS2, CAPS2) is involved in regulated secretion from dense-core vesicles (DCVs), which contain neuropeptides including brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). Capds2 knockout (KO) mice show impaired cerebellar development in addition to autistic-like behavioral phenotypes. To understand the molecular impact caused by loss of Capds2, we analyzed gene expression profiles in the Capds2 KO cerebellum using a GeneChip microarray and the KEGG Pathway database. Significant differential expression was observed in 1211 of 22,690 (5.34%) genes represented on the chip. The expression levels of exocytosis-related genes (Stx5a, Syt6), genes encoding secretory (Fgf2, Fgf4, Edn2) and synaptic proteins (Grin2b, Gabbr1), neurotrophin signaling-associated genes (Sos1, Shc1, Traf6, Psen2), and a gene for Rett syndrome (Mecp2) were significantly changed. Taken together, these results suggest that deregulated gene expression caused by loss of Capds2 may cause developmental deficits and/or pathological symptoms, resulting in autistic-like phenotypes.

Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , ,