Article ID Journal Published Year Pages File Type
5744770 Journal of Great Lakes Research 2017 10 Pages PDF
Abstract

Evaluating the potential effects of changes in climate on conservation practices can help inform strategies to protect freshwater biodiversity that are robust, even as conditions change. Here we apply a climate change “test” to a framework for estimating the amount of agricultural conservation practices needed to achieve desired fish conservation outcomes for four watersheds in the Saginaw Bay region of Michigan, USA. We developed three climate scenarios from global climate model outputs (high emissions scenario, “2080s” timeframe) to provide insight on potential impacts of a climate driver that represents a key uncertainty for this management system, the amount and timing of spring and summer precipitation. These scenarios were used as inputs to agricultural watershed models, which produced water quality outputs that we compared to thresholds in fish biodiversity metrics at the subwatershed scale. Our results suggest that impacts of climate change on evaporation rates and other aspects of hydrology will shift the relative importance of key stressors for fish (i.e., sediment loadings vs. nutrient concentrations) across these different watersheds, highlighting the need to design resilient implementation plans and policies. Overall, we found that changes in climate are likely to increase the need for agricultural conservation practices, but that increasing the implementation rate above current levels will likely remain a good investment under current and future climate conditions.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , , ,