Article ID Journal Published Year Pages File Type
5745922 Chemosphere 2017 27 Pages PDF
Abstract
Amending feed water with biocide is one of the strategy conventionally used to control biofouling in membrane-based water treatment systems. In this study, the impacts of two biocides, monochloramine (MCA) and hydrogen peroxide (H2O2), on the bacterial community in wastewater samples were investigated at equivalent biocidal efficiency levels. Viable bacterial numbers were determined before and after treatment for 10 min and 60 min using both culture-dependent heterotrophic plate count (HPC) and culture-independent propidium monoazide (PMA)-droplet digital PCR (ddPCR). Shifts of the live bacterial diversity were studied using high-throughput sequencing of 16S rRNA genes and followed by bioinformatics analysis. At the genus level, MCA treatment increased the relative abundance of Mycobacterium, Pseudomonas, Sphingomonas, Clostridium, Streptococcus, Undibacterium, Chryseobacterium and Cloacibacterium, while decreasing Arcobacter, Nitrospira and Sphingobium. H2O2 treatment increased the relative abundance of Anaerolinea and Filimonas, and diminished Denitratisoma and Thauera. The findings of this study suggest a combination of different types of biocide may be the most efficient strategy for biofouling mitigation and increasing membrane treatment efficiency.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,