Article ID Journal Published Year Pages File Type
5746446 Chemosphere 2017 10 Pages PDF
Abstract

•Salt-toxicity on growth and production of ten local wheat cultivars were investigated.•PCA and cluster analyses enabled us to identify differential salt-tolerant genotypes.•Na+/K+ ratio and proline content positively correlated with growth of tolerant cultivars.•BARI Gom 28 (tolerant) exhibited lower oxidative damage than Gourab (sensitive).

High salinity is a major constraint for wheat productivity in many countries, including Bangladesh. Here, we examined the effects of salt-induced toxicity on growth and production of 10 local wheat cultivars by analyzing physiological, biochemical and agronomical responses to identify the salt-tolerant attributes among the contrasting genotypes. Results of cluster analyses based on salt tolerance indices of plant growth-related and yield-contributing parameters, ionic balance (Na+, K+ and Na+/K+ ratio), and stress indicators (SPAD values and proline) revealed Gourab and Shatabdi as salt-sensitive, BARI Gom 27 and 28 as salt-tolerant and the other six examined varieties as moderately salt-tolerant cultivars. Hierarchical clustering and principle component analyses also demonstrated BARI Gom 27 and 28 as the highest salt-tolerant cultivars, especially in terms of Na+/K+ ratio and proline level. Additionally, lower accumulations of hydrogen peroxide and malondialdehyde, and higher activities of antioxidant enzymes catalase, peroxidase and ascorbate peroxidase in the salt-tolerant BARI Gom 28 than in the salt-sensitive Gourab indicated reduced oxidative damage in BARI Gom 28 relative to that in Gourab. Collectively, our findings suggest that the optimum growth and yield of salt-tolerant cultivars are associated with decreased Na+/K+ ratio, increased proline level and reduced oxidative stress. Furthermore, BARI Gom 27 and 28 could be suggested as suitable cultivars for cultivation in salt-affected areas, and the contrasting salt-responsive genotypes can be used as valuable genetic resources in breeding and dissection of molecular mechanisms underlying wheat adaptation to high salinity.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,