Article ID Journal Published Year Pages File Type
5747103 Chemosphere 2017 35 Pages PDF
Abstract
Impacts of ozonation alone as well as an advanced oxidation process of ozone plus hydrogen peroxide (H2O2 + O3) on organic matter prior to and following biofiltration were studied at pilot-scale. Three biofilters were operated in parallel to assess the effects of varying pre-treatment types and dosages. Conventionally treated water (coagulation/flocculation/sedimentation) was fed to one control biofilter, while the remaining two received water with varying applied doses of O3 or H2O2 + O3. Changes in organic matter were characterized using parallel factors analysis (PARAFAC) and fluorescence peak shifts. Intensities of all PARAFAC components were reduced by pre-oxidation, however, individual humic-like components were observed to be impacted to varying degrees upon exposure to O3 or H2O2 + O3. While the control biofilter uniformly reduced fluorescence of all PARAFAC components, three of the humic-like components were produced by biofiltration only when pre-oxidation was applied. A fluorescence red shift, which occurred with the application of O3 or H2O2 + O3, was attributed to a relative increase in carbonyl-containing components based on previously reported results. A subsequent blue shift in fluorescence caused by biofiltration which received pre-oxidized water indicated that biological treatment readily utilized organics produced by pre-oxidation. The results provide an understanding as to the impacts of organic matter character and pre-oxidation on biofiltration efficiency for organic matter removal.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , ,