Article ID Journal Published Year Pages File Type
5747714 Ecotoxicology and Environmental Safety 2017 11 Pages PDF
Abstract

•BPA affected photosynthesis by changing stomatal and non-stomatal factors.•Low/high-dose BPA improved/inhibited stomatal and non-stomatal factors.•Observation of stomata showed the mechanism of BPA on plant photosynthesis directly.•A model is proposed for one pathway of BPA's effect on plant photosynthesis.

Bisphenol A (BPA) is an emerging environmental endocrine disruptor that has toxic effects on plants growth. Photosynthesis supplies the substances and energy required for plant growth, and regulated by stomatal and non-stomatal factors. Therefore, in this study, to reveal how BPA affects photosynthesis in soybean seedlings (Glycine max L.) from the perspective of stomatal and non-stomatal factors, the stomatal factors (stomatal conductance and behaviours) and non-stomatal factors (Hill reaction, apparent quantum efficiency, Rubisco activity, carboxylation efficiency, the maximum Rubisco carboxylation velocity, ribulose-1,5-bisphospate regeneration capacities mediated by maximum electron transport rates, and triose phosphate utilization rate) were investigated using a portable photosynthesis system. Moreover, the pollution of BPA in the environment was simulated. The results indicate that low-dose BPA enhanced net photosynthetic rate (Pn) primarily by promoting stomatal factors, resulting in increased relative growth rates and accelerated soybean seedling growth. High-dose BPA decreases the Pn by simultaneously inhibiting stomatal and non-stomatal factors, and this inhibition decreases the relative growth rates further reducing soybean seedling growth. Following the withdrawal of BPA, all of the indices were restored to varying degrees. In conclusion, low-dose BPA increased the Pn by promoting stomatal factors while high-dose BPA decreased the Pn by simultaneously inhibiting stomatal and non-stomatal factors. These findings provide a model (or, hypothesis) for the effects of BPA on plant photosynthesis.

Graphical abstractDownload high-res image (225KB)Download full-size image

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , ,