Article ID Journal Published Year Pages File Type
5747895 Ecotoxicology and Environmental Safety 2017 9 Pages PDF
Abstract

•The toxicity of oil sand processed water, leachates and naphthenic acids were examined in isolated fish leukocytes.•The oil sand processed water decreased genes involved in pro-inflammation and increased antigen presentation activity.•The immunotoxicogenic effects of oil sand processed water differed from oil sand leachates, commercial naphtenic acids mixture, benzo(a)pyrene and naphthalene.

Increased oil sands (OS) mining activity has raised concerns about impacts on aquatic organisms. This study sought to examine the effects of single representative compounds from OS (benzo(a)pyrene, naphthalene), a mixture of naphthenic acids (NAs), OS-processed water (OSPW) and OS leachate (OSL) extracts on rainbow trout leukocytes. Primary cultures of trout leukocytes were exposed to increasing concentrations of benzo(a)pyrene, naphthalene, NAs, OSPW and OSL for 48 h at 18 °C. Immunocompetence was followed by measuring changes in lymphocyte and macrophage viability and phagocytosis. Changes in the expression of 10 transcripts were also followed: interleukin 1, 2 and 6 (Il-1, Il-2 and Il-6), calreticulin (CRT), caspase 9 (Cas9), aryl hydrocarbon receptor (AhR), cyclooxygenase-2 (COX2), glutathione S-transferase (GST), catalase (CAT) and p53 tumor suppressor. The results revealed that exposure to OSPW extracts decreased the capacity of macrophages to engulf three beads or more, while the other compounds generally increased phagocytosis activity. Lymphocyte apoptosis was increased by all compounds and mixtures except naphthalene. Both OSPW and OSL induced apoptosis in macrophages. At the gene expression level, Cas9, CRT, Il-1 (inhibition) and Il-2 were specifically influenced by OSPW, while CAT, p53, COX2 and Il-1 (induction) transcripts were specifically expressed by OSL. Leukocyte exposure to OSPW produced characteristic changes in immunocompetence and genes involved in proinflammatory, apoptosis and protein damage (CRT) pathways which could not be explained by OSL, benzo(a)pyrene, naphthalene and NA mixture.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,