Article ID Journal Published Year Pages File Type
5749571 Environmental Pollution 2017 9 Pages PDF
Abstract

Toxicity and uptake of nano-CeO2 (nCeO2) in edible vegetables are not yet fully understood. In the present study, we grew romaine lettuce in sand amended with nCeO2. At high concentrations (1000 and 2000 mg/kg), nCeO2 diminished the chlorophyll content by 16.5% and 25.8%, respectively, and significantly inhibited the biomass production. nCeO2 (≥100 mg/kg) altered antioxidant enzymatic activities and malondialdehyde levels in the plants. nCeO2 (≥500 mg/kg) triggered a remarkable increase of nitrate-N level in the shoots, which can be converted to toxic nitrite in humans thereby posed risk to human health. Concentration dependent accumulation of Ce in the plant tissues was observed. X ray absorption near edge spectroscopy (XANES) results indicate that Ce presented as nCeO2 and CePO4 in the roots while as nCeO2 and Ce carboxylates in the shoots. Chelation of Ce3+ by citric acid or precipitation of Ce3+ by PO43− reduced the translocation and toxicity of nCeO2, indicating that release of Ce3+ played a critical role in the toxicity nCeO2.

Graphical abstractDownload high-res image (199KB)Download full-size image

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , , , ,