Article ID Journal Published Year Pages File Type
5750180 Science of The Total Environment 2018 10 Pages PDF
Abstract

•Pretreatment to remove calcium improves the quality of the recovered struvite.•The Ca2 +: CO32- molar ratio of 1:1.4 achieves low Mg2 + loss and high Ca2 + removal.•Calcium removal decreases membrane fouling and thus benefits water recovery.•The calcium pretreatment - FO - struvite recovery is the optimal configuration.

Landfill leachate contains substances that can be potentially recovered as valuable resources. In this study, magnesium in a landfill leachate was recovered as struvite with calcium pretreatment; meanwhile, the leachate volume was reduced by using a submerged forward osmosis (FO) process, thereby enabling significant reduction of further treatment footprint and cost. Without pretreatment, calcium exhibited strong competition for phosphate with magnesium. The pretreatment with a Ca2 +: CO32- molar ratio of 1:1.4 achieved a relatively low loss rate of Mg2 + (24.1 ± 2.0%) and high Ca2 + removal efficiency (89.5 ± 1.7%). During struvite recovery, 98.6 ± 0.1% of magnesium could be recovered with a significantly lower residual PO43 −-P concentration (< 25 mg L− 1) under the condition of (Mg + Caresidual): P molar ratio of 1:1.5 and pH 9.5. The obtained struvite had a similar crystal structure and composition (19.3% Mg and 29.8% P) to that of standard struvite. The FO process successfully recovered water from the leachate and reduced its volume by 37%. The configuration of calcium pretreatment - FO - struvite recovery was found to be the optimal arrangement in terms of FO performance. These results have demonstrated the feasibility of magnesium recovery from landfill leachate and the importance of the calcium pretreatment, and will encourage further efforts to assess the value and purity of struvite for commercial use and to develop new methods for resource recovery from leachate.

Graphical abstractDownload high-res image (157KB)Download full-size image

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,