Article ID Journal Published Year Pages File Type
57507 Catalysis Today 2008 5 Pages PDF
Abstract

The role of the initial acidity of ferrierite type zeolite on the status of cobalt and the catalytic activity of CoFER and InCoFER was investigated. Two FER zeolites were used: NH4FER without any pretreatment (FER-1) and the same zeolite, dehydroxylated at 825 K (FER-2). Dehydroxylation removed most of the Si–OH–Al groups, therefore the resulting zeolite revealed practically no ion exchange capacity. The status of cobalt was followed by IR spectroscopy with probe molecules: CO (a probe for Co2+) and NO (a probe for Co3+). The introduction of cobalt by solid-state ion exchange produced divalent cobalt in exchange positions and in the form of oxide-like clusters, their respective concentration was determined by quantitative IR experiments of CO sorption. The amount of Co3+, present in CoFER-1 and InCoFER-1, was also determined. All these forms of cobalt were practically absent from CoFER-2 and InCoFER-2. The NO conversion and selectivity to N2 of CoFER-2 in CH4-SCR-NO was poor, indicating the essential role of the initial acidity of the ferrierite matrix on the formation of catalytically active Co species. The introduction of indium into CoFER only slightly increased the NO conversion and shifted the reaction path from NO2 towards N2 formation for FER-1, while greatly improved the catalytic performance of the FER-2 series.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , ,