Article ID Journal Published Year Pages File Type
5751065 Science of The Total Environment 2017 12 Pages PDF
Abstract

•Strong impact of wind-driven rain on soil erosion and runoff generation•Susceptibility of different environments to climate change associated storm impact•Improvement of environmental risk assessment by empirical evaluation

Prediction and risk assessment of hydrological extremes are great challenges. Following climate predictions, frequent and violent rainstorms will become a new hazard to several regions in the medium term. Particularly agricultural soils will be severely threatened due to the combined action of heavy rainfall and accompanying winds on bare soil surfaces. Based on the general underestimation of the effect of wind on water erosion, conventional soil erosion measurements and modeling approaches lack related information to adequately calculate its impact. The presented experimental-empirical approach shows the strong impact of wind on the erosive potential of rain. The tested soils had properties that characterize three environments 1. Silty loam of semi-arid Mediterranean dryfarming and fallow, 2. clayey loam of humid agricultural sites and 3. cohesionless sandy substrates as found at coasts, dune fields and drift-sand areas. Total erosion was found to increase by a factor of 1.3 to 7.1, depending on site characteristics. A complementary laboratory procedure was applied to quantify explicitly the effect of wind on raindrop erosion as well as the influence of substrate, surface structure and slope on particle displacement. These tests confirmed the impact of wind-driven rain on total erosion rates to be of great importance when compared to all other tested factors. To successfully adapt soil erosion models to near-future challenges of climate change induced rain storms, wind-driven rain should be included into the hazard management agenda.

Graphical abstractDownload high-res image (99KB)Download full-size image

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,