Article ID Journal Published Year Pages File Type
575231 Journal of Hazardous Materials 2016 6 Pages PDF
Abstract
Trimethoprim (TMP), sulfamethoxazole (SMX), and triclosan (TCS) are widely used and continuously released into aquatic environments. Freshwater algae can be responsible for the uptake and transfer of the contaminants because they are a major food source for most aquatic organisms. This research applied incubation studies to evaluate the removal efficiency of TMP, SMX, and TCS by the green alga Nannochloris sp. The results showed that the hydrophilic antibiotics TMP and SMX remained in the algal culture at 100% and 68%, respectively, after 14 days of incubation, and therefore were not significantly removed from the medium. However, the lipophilic antimicrobial TCS was significantly removed from the medium. Immediately after incubation began, 74% of TCS dissipated and 100% of TCS was removed after 7 days of incubation. Additionally, over 42% of TCS was found associated with the algal cells throughout the incubation. The results demonstrate that the presence of Nannochloris sp. eliminated TCS in the aquatic system, but could not significantly remove the antibiotics TMP and SMX. The removal mechanisms of SMX and TCS were found to be different in the algal culture. Algae-promoted photolysis was the primary process for removing SMX and algae-mediated uptake played a major role in removing TCS.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, ,