Article ID Journal Published Year Pages File Type
575321 Journal of Hazardous Materials 2016 9 Pages PDF
Abstract
A series of 3-dimensional (3-D) structural mesoporous silica materials, SBA-16, MCM-48 and KIT-6, was synthesized and supported with different ZnO loadings (10, 20, 30, and 40 wt%) by the incipient wetness method to evaluate the performances on H2S removal at room temperature. These materials were characterized by N2 adsorption, XRD, and TEM to investigate their textural properties. All the ZnO-loaded adsorbents exhibited the H2S removal capacity of bellow 0.1 ppmv. With the best ZnO loading percentage of 30 wt% on MCM-48 and KIT-6, 20 wt% on SBA-16 according to the results of breakthrough test, further increasing ZnO loading caused the decrease of the adsorption capacity due to the agglomeration of ZnO. Besides, the H2S adsorption capacities of the supports materials varied in the order of KIT-6 > MCM-48 > SBA-16, which was influenced primarily by their pore volume and pore size. With the largest pores in these 3-D arrangement materials, KIT-6 showed the best performance of supported material for ZnO, due to its retained superior physical properties as well as large pore diameter to allow faster gas-solid interaction and huge pore volume to disperse ZnO on the surface of it.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , ,