Article ID Journal Published Year Pages File Type
5753640 Atmospheric Research 2017 13 Pages PDF
Abstract
The objective of this study is to identify and document the radiation biases in the latest National Centers for Environment Prediction (NCEP), Climate Forecasting System (CFSv2) and to investigate the probable reasons for these biases. This analysis is made over global and Indian domain under all-sky and clear-sky conditions. The impact of increasing the horizontal resolution of the atmospheric model on these biases is also investigated by comparing results of two different horizontal resolution versions of CFSv2 namely T126 and T382. The difference between the top of the atmosphere and surface energy imbalance in T126 (T382) is 3.49 (2.78) W/m2. This reduction of bias in the high resolution model is achieved due to lesser low cloud cover, resulting more surface insolation, and due to more latent heat fluxes at the surface. Compared to clear sky simulations, all sky simulations exhibit larger biases suggesting that the cloud covers are not simulated well in the model. The annual mean high level cloud cover is over estimated over the global as well as the Indian domain. This overestimation over the Indian domain is also present during JJAS. There is also evidence that both of the models have insufficient water vapour in their atmosphere. This study suggests that in order to improve the model's mean radiation climatology, simulation of clouds in the model also needs to be improved, and future model development activities should focus on this aspect.
Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , ,