Article ID Journal Published Year Pages File Type
575503 Journal of Hazardous Materials 2016 10 Pages PDF
Abstract
In this study, the effects of polycarboxylates on both Cr(VI) reduction and S(IV) consumption in Cr(VI)/S(IV) system was investigated in acidic solution. Under aerobic condition, the productions of reactive oxygen species (ROS), i.e., SO4− and OH, have been confirmed in S(IV) reducing Cr(VI) process by using electron spin resonance and fluorescence spectrum techniques, leading to the excess consumption of S(IV). However, when polycarboxylates (oxalic, citric, malic and tartaric acid) were present in Cr(VI)/S(IV) system, the affinity of polycarboxylates to CrSO62− can greatly promote the reduction of Cr(VI) via expanding the coordination of Cr(VI) species from tetrahedron to hexahedron. Besides, as alternatives to S(IV), these polycarboxylates can also act as electron donors for Cr(VI) reduction via intramolecular electron transfer reaction, which is dependent on the energies of the highest occupied molecular orbital of these polycarboxylates. Notably, the variant electron donating capacity of these polycarboxylates resulted in different yield of ROS and therefore the oxidation efficiencies of other pollutants, e.g., rhodamine B and As(III). Generally, this study does not only shed light on the mechanism of S(IV) reducing Cr(VI) process mediated by polycarboxylates, but also provides an escalated, cost-effective and green strategy for the remediation of Cr(VI) using sulfite as a reductant.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , , , ,