Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5755444 | International Journal of Applied Earth Observation and Geoinformation | 2017 | 10 Pages |
Abstract
New Zealand farming relies heavily on grazed pasture for feeding livestock; therefore it is important to provide high quality palatable grass in order to maintain profitable and sustainable grassland management. The presence of non-photosynthetic vegetation (NPV) such as dead vegetation in pastures severely limits the quality and productivity of pastures. Quantifying the fraction of dead vegetation in mixed pastures is a great challenge even with remote sensing approaches. In this study, a high spatial resolution with pixel resolution of 1 m and spectral resolution of 3.5-5.6 nm imaging spectroscopy data from AisaFENIX (380-2500 nm) was used to assess the fraction of dead vegetation component in mixed pastures on a hill country farm in New Zealand. We used different methods to retrieve dead vegetation fraction from the spectra; narrow band vegetation indices, full spectrum based partial least squares (PLS) regression and feature selection based PLS regression. Among all approaches, feature selection based PLS model exhibited better performance in terms of prediction accuracy (R2CV = 0.73, RMSECV = 6.05, RPDCV = 2.25). The results were consistent with validation data, and also performed well on the external test data (R2 = 0.62, RMSE = 8.06, RPD = 2.06). In addition, statistical tests were conducted to ascertain the effect of topographical variables such as slope and aspect on the accumulation of the dead vegetation fraction. Steep slopes (>25°) had a significantly (p < 0.05) higher amount of dead vegetation. In contrast, aspect showed non-significant impact on dead vegetation accumulation. The results from the study indicate that AisaFENIX imaging spectroscopy data could be a useful tool for mapping the dead vegetation fraction accurately.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Computers in Earth Sciences
Authors
R.R. Pullanagari, G. Kereszturi, I.J. Yule,