Article ID Journal Published Year Pages File Type
5755866 Palaeogeography, Palaeoclimatology, Palaeoecology 2017 9 Pages PDF
Abstract
We use time-series δ18O and δ13C data from seawater and live-collected Conus shells from Panama's Pacific coast to test the fidelity of the gastropod's δ13C values as a proxy for the δ13C of marine dissolved inorganic carbon (DIC), and the potential of δ18O-δ13C correlations in shell profiles for resolving relative magnitudes of seasonal upwelling and freshening. Water samples were collected from March 2011 to August 2012 from Naos Island Marine Laboratory, and Conus specimens were collected from nearby Veracruz Beach in July 2013. In general, patterns corresponded with seasonal changes in rainfall and upwelling on the Pacific coast of Panama. During the long rainy season, the upwelling signal is absent and seawater salinity, δ18O, and δ13CDIC all decline. During the dry season, the upwelling signal increases and runoff declines increasing salinity, δ18O, and δ13CDIC values. Shell δ13C values strongly correlate with measured δ13CDIC values, but are lower than expected equilibrium for aragonite by approximately + 2‰ reflecting the incorporation of light metabolic C. The co-dependences of δ18O and δ13C provide reliable indicators of upwelling (negative correlation) and freshening (positive correlation) for nearshore environments, allowing for the study of historical climate change and upwelling based on beach-collected museum specimens.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , , , ,