Article ID Journal Published Year Pages File Type
5757473 Marine Pollution Bulletin 2017 9 Pages PDF
Abstract
In this study an algal bloom event in fall 2013 in the Strait of Hormuz was thoroughly investigated using satellite remote sensing and hydrodynamic modeling. The motivation of this study is to deduce ambient conditions prior to and during the bloom outbreak and understand its trigger. Bloom tracking was achieved by sequential MODIS imagery and numerical simulations. Satellite observations showed that the bloom was initiated in late October 2013 and dissipated in early June 2014. Trajectories of bloom patches were simulated using a Lagrangian transport model. Model-based predictions of bloom patches' trajectories were in good agreement with satellite observations with a probability of detection (POD) reaching 0.85. Analysis of ancillary data, including sea surface temperature, ocean circulation, and wind, indicated that the bloom was likely caused by upwelling conditions in the Strait of Hormuz. Combined with numerical models, satellite observations provide an essential tool for investigating bloom conditions.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Oceanography
Authors
, , , ,