Article ID Journal Published Year Pages File Type
576177 Journal of Hazardous Materials 2015 9 Pages PDF
Abstract
The authors investigated the effects of di-n-butyl phthalate (DBP) on root physiology and rhizosphere microbial communities of cucumber seedlings (sativus L. cv Jinyan No. 4). Root protein content and root activity were observed to decrease. From the ultrastructural micrographs, visible impact on the mitochondria, endoplasmic reticulum and vacuole were detected. Moreover, the number of starch grains increased, and some were adhered to other cell components which might be the most direct evidence of DBP causing cellular damage. Results of PCR-DGGE (denaturing gradient gel electrophoresis) indicated that DBP significantly changed the abundance, structure and composition of rhizosphere bacteria when the concentration was higher than 50 mg L−1. The relative abundances of Firmicutes increased while that of Bacteroidetes decreased. Bacillus was detected as the dominant bacteria in DBP contaminated cucumber rhizospheric soil. The amount of Actinobacteridae and Pseudomonas decreased until it disappeared in the rhizosphere soil when exposed to DBP concentrations higher than 50 mg L−1.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , , , , , , , ,