Article ID Journal Published Year Pages File Type
576225 Journal of Hazardous Materials 2015 11 Pages PDF
Abstract
Three-dimensional Ag2O and Ag co-loaded TiO2 (3D Ag2O-Ag/TiO2) composites have been synthesized through a facile method, characterized using SEM, EDX, TEM, XRD, XPS, UV-vis DRS, BET techniques, and applied to remove radioactive iodide ions (I−). The photocatalytic adsorption capacity (207.6 mg/g) of the 3D Ag2O-Ag/TiO2 spheres under visible light is four times higher than that in the dark, which is barely affected by other ions, even in simulated salt lake water where the concentration of Cl− is up to 590 times that of I−. The capability of the composites to remove even trace amounts of I− from different types of water, e.g., deionized or salt lake water, is demonstrated. The composites also feature good reusability, as they were separated after photocatalytic adsorption and still performed well after a simple regeneration. Furthermore, a mechanism explaining the highly efficient removal of radioactive I− has been proposed according to characterization analyses of the composites after adsorption and subsequently been verified by adsorption and desorption experiments. The proposed cooperative effects mechanism considers the interplay of three different phenomena, namely, the adsorption performance of Ag2O for I−, the photocatalytic ability of Ag/TiO2 for oxidation of I−, and the readsorption performance of AgI for I2.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , , , ,