Article ID Journal Published Year Pages File Type
576427 Journal of Hazardous Materials 2015 8 Pages PDF
Abstract
Pd/CeO2-ZrO2-Pr2O3 (CZP) catalysts with different Ce/Zr molar ratios were synthesized and systematically investigated by XRD, N2 adsorption-desorption, XPS, H2-TPR, OSC and in situ DRIFTS techniques. The results of XPS, in situ DRIFTS, etc., show that the number of oxygen vacancies increases with the increasing Zr content and thus leads to the enhanced metal-support interaction and the accelerative formation rate of nitrate, formate, acetate and carbonate species, resulting in improving catalytic performance for HC and NO elimination, especially for Pd/CZP catalysts with Ce/Zr from 1/2 to 1/3. While Pd/CZP catalysts with higher OSC value (Ce/Zr = 4/1-1/2) exhibit better catalytic activity of CO and NO2 elimination. An appropriate concentration of Zr facilitates the diffusion of Pr from the surface to the bulk of the CZP supports, thus forming more homogeneous CZP solid solution and improving the structure/textual stability, which promotes the thermal stability of catalysts. Pd/CZP catalysts with Ce/Zr from 2/1 to 1/2 exhibit good thermal stability.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , ,