Article ID Journal Published Year Pages File Type
5765819 Journal of Contaminant Hydrology 2017 35 Pages PDF
Abstract
A model is presented to account for elevation-dependent residual and entrapped LNAPL above and below, respectively, the water-saturated zone when predicting subsurface LNAPL specific volume (fluid volume per unit area) and transmissivity from current and historic fluid levels in wells. Physically-based free, residual, and entrapped LNAPL saturation distributions and LNAPL relative permeabilities are integrated over a vertical slice of the subsurface to yield the LNAPL specific volumes and transmissivity. The model accounts for effects of fluctuating water tables. Hypothetical predictions are given for different porous media (loamy sand and clay loam), fluid levels in wells, and historic water-table fluctuations. It is shown the elevation range from the LNAPL-water interface in a well to the upper elevation where the free LNAPL saturation approaches zero is the same for a given LNAPL thickness in a well regardless of porous media type. Further, the LNAPL transmissivity is largely dependent on current fluid levels in wells and not historic levels. Results from the model can aid developing successful LNAPL remediation strategies and improving the design and operation of remedial activities. Results of the model also can aid in accessing the LNAPL recovery technology endpoint, based on the predicted transmissivity.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , ,