Article ID Journal Published Year Pages File Type
576614 Journal of Hazardous Materials 2014 6 Pages PDF
Abstract
Recent studies found that ozonation of organic pollutants with dimethylamino groups produces N-nitrosodimethylamine (NDMA) that is highly carcinogenic to humans. However, the formation mechanism of NDMA remains inexplicit, and previously proposed mechanisms are inconsistent with experimental observations. In this study, the formation mechanism of NDMA in ozonation was explored by density functional theory (DFT) calculations, with dimethylamine (DMA) as a model compound. By calculating Gibbs energies and energy barriers, formation of NDMA in ozonation of DMA was observed to proceed through a hydroxylamine mechanism. The calculation results show that hydroxylamine is generated through DMA reacting with hydroxyl radicals (HO
- ) formed from hydrolysis of ozone. DMA reacting with hydroxylamine can produce unsymmetrical dimethylhydrazine (UDMH), a well-known NDMA precursor. Transformation of UDMH to NDMA is mainly induced by ozone or HO
- rather than dissolved oxygen proposed previously. The reaction of DMA and hydroxylamine is pH dependent, with energy barriers increasing from neutral pH to the second pKa of hydroxylamine and then decreasing. This is in accordance with the experimentally observed pH dependence of NDMA yield in ozonation, indicating that the hydroxylamine mechanism is responsible for the NDMA formation in ozonation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Health and Safety
Authors
, , , , , ,