Article ID Journal Published Year Pages File Type
5766547 Progress in Oceanography 2017 11 Pages PDF
Abstract

•Spring abundance of adult C. finmarchicus decreases by at least 50% across years.•Inter-annual trends vary along the transect.•Spring peak of adult C. finmarchicus has become earlier with a shorter duration.

Calanus finmarchicus is the dominant copepod species in the Norwegian Sea, where it plays a key role in the ecosystem by transferring energy from primary producers to higher trophic levels. This paper analyses a 17-year time series, 1996-2012, on C. finmarchicus collected within the Atlantic Water mass along the Svinøy transect in the southeastern Norwegian Sea. We use the spring abundance of adult as a proxy for the size of C. finmarchicus' overwintered population. The inter-annual trend in spring abundance of adult C. finmarchicus in the 200-0 m depth-stratum is assessed while accounting for spring population development to the adult stage represented by day of year for sampling, inter-annual changes in timing of population development, and spatial differences. For the most oceanic stations, a significant inter-annual trend in spring abundance of adult C. finmarchicus was revealed using generalized additive models (GAM). This trend primarily consists in an increase prior to year 2000 and a decrease between years 2000 and ca. 2011. For the stations closer to the coast, the identified inter-annual trend is a decrease during a longer period from the late 90s until ca. 2011. From 2000 to 2011, our estimates suggest a 50% decrease for the most oceanic stations, and as much as an 81% decrease for the stations closer to the coast. In addition the results suggest a consistent change in phenology over the years and the stations. The predicted spring peak of overwintered adult population abundance is suggested to become shorter by 3 days, and the predicted maximum of abundance to take place 4 days earlier over the 17 years of the time-series. The results highlight significant changes in intensity and timing of the overwintered population of a key zooplankton species in the Norwegian Sea that may have important implications on the scale of an entire ecosystem.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, , ,