Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5766558 | Progress in Oceanography | 2017 | 10 Pages |
Abstract
We used satellite sea surface temperature (SST) data to characterize coastal fronts and then tested the effects of the fronts and other environmental variables on the distribution of the albacore tuna (Thunnus alalunga) catches in the coastal areas (from the coast to 200Â nm offshore) of the Northeast Pacific Ocean. A boosted regression tree (BRT) model was used to explain the spatial and temporal patterns in albacore tuna catch per unit effort (CPUE) (1988-2011), using frontal features (distance to the front and temperature gradient), and other environmental variables like SST, surface chlorophyll concentration (chlorophyll), and geostrophic currents as explanatory variables. Based on over two decades of high-resolution data, the modeled results confirmed previous findings that albacore CPUE distribution is strongly influenced by SST and chlorophyll at fishing locations, and the distance of fronts from the coast (DFRONT-COAST), albeit with substantial seasonal and interannual variation. Albacore CPUEs were higher near warm, low chlorophyll oceanic waters, and near SST fronts. We performed sequential leave-one-year-out cross-validations for all years and found that the relationships in the BRT models were robust for the entire study period. Spatial distributions of model-predicted albacore CPUE were similar to observations, but the model was unable to predict very high CPUEs in some areas. These results help to explain previously observed variability in albacore CPUE and will likely help improve international fisheries management in the face of environmental changes.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
Karen Nieto, Yi Xu, Steven L.H. Teo, Sam McClatchie, John Holmes,