Article ID Journal Published Year Pages File Type
5770916 Journal of Hydrology 2017 11 Pages PDF
Abstract

•We propose a new method for soil moisture monitoring points.•The Euclidean similarity between datasets was used to characterize soil moisture.•The method developed provides a better explanation for soil moisture patterns.

Soil moisture is an important factor for understanding hydrological and solute transport processes at the hillslope scale. The selection of representative points for soil moisture measurement has been explored to investigate temporal variation of average soil moisture with minimum costs and maximum stability. The optimal selection of soil moisture monitoring points has been reevaluated to address hillslope hydrological processes and the impacts of seasonal differences. An alternative method to select soil moisture measurement points was developed to adequately represent immediate soil moisture response patterns to sequential rainfall events. To address the seasonal features of rainfall events and their impacts on soil moisture redistribution along the hillslope, field soil moisture data were collected at 49 points for three seasons over periods of 25 days with bi-hourly monitoring intervals. For effective characterization of soil moisture variation, soil moisture datasets were classified using cluster analysis based on Euclidean similarity. Points delineated using the proposed method not only provide better stability of average soil moistures but also adequately represent the response patterns of soil moisture to rainfall events on the hillslope.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, ,