Article ID Journal Published Year Pages File Type
5771863 Journal of Algebra 2017 51 Pages PDF
Abstract
We investigate the geometric theory of local MV-algebras and its quotients axiomatizing the local MV-algebras in a given proper variety of MV-algebras. We show that, whilst the theory of local MV-algebras is not of presheaf type, each of these quotients is a theory of presheaf type which is Morita-equivalent to an expansion of the theory of lattice-ordered abelian groups. Di Nola-Lettieri's equivalence is recovered from the Morita-equivalence for the quotient axiomatizing the local MV-algebras in Chang's variety, that is, the perfect MV-algebras. We establish along the way a number of results of independent interest, including a constructive treatment of the radical for MV-algebras in a fixed proper variety of MV-algebras and a representation theorem for the finitely presentable algebras in such a variety as finite products of local MV-algebras.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,