Article ID Journal Published Year Pages File Type
5773027 Linear Algebra and its Applications 2018 12 Pages PDF
Abstract
A rose graph is a graph consisting of cycles that all meet in one vertex. We show that except for two specific examples, these rose graphs are determined by the Laplacian spectrum, thus proving a conjecture posed by Liu and Huang (2013) [8]. We also show that if two rose graphs have a so-called universal Laplacian matrix with the same spectrum, then they must be isomorphic. In memory of Horst Sachs (1927-2016), we show the specific case of the latter result for the adjacency matrix by using Sachs' theorem and a new result on the number of matchings in the disjoint union of paths.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, ,