Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773252 | Linear Algebra and its Applications | 2017 | 31 Pages |
Abstract
We present a new efficient algorithm to construct partitions of a special class of equiangular tight frames (ETFs) that satisfy the operator norm bound established by a theorem of Marcus, Spielman, and Srivastava (MSS), which they proved as a corollary yields a positive solution to the Kadison-Singer problem. In particular, we prove that certain diagonal partitions of complex ETFs generated by recursive skew-symmetric conference matrices yield a refinement of the MSS bound. Moreover, we prove that all partitions of ETFs whose largest subset has cardinality three or less also satisfy the MSS bound.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Algebra and Number Theory
Authors
James Rosado, Hieu D. Nguyen, Lei Cao,