Article ID Journal Published Year Pages File Type
5773302 Linear Algebra and its Applications 2017 21 Pages PDF
Abstract
This paper is concerned with the self-adjoint perturbations of the spectra for the upper triangular partial operator matrix with given diagonal entries. A necessary and sufficient condition is given under which such operator matrix admits a Weyl (Fredholm) operator completion by choosing some bounded self-adjoint operator. It is shown that the self-adjoint perturbation of the Weyl (essential) spectrum can be the proper set of the general perturbation. Combining the spectral properties, we further characterize the perturbation of the Weyl (essential) spectrum for Hamiltonian operators.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,