Article ID Journal Published Year Pages File Type
5773423 Linear Algebra and its Applications 2017 14 Pages PDF
Abstract
Given a real-valued positive semidefinite matrix, Williamson proved that it can be diagonalised using symplectic matrices. The corresponding diagonal values are known as the symplectic spectrum. This paper is concerned with the stability of Williamson's decomposition under perturbations. We provide norm bounds for the stability of the symplectic eigenvalues and prove that if S diagonalises a given matrix M to Williamson form, then S is stable if the symplectic spectrum is nondegenerate and STS is always stable. Finally, we sketch a few applications of the results in quantum information theory.
Related Topics
Physical Sciences and Engineering Mathematics Algebra and Number Theory
Authors
, , ,