Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773814 | Journal of Complexity | 2017 | 20 Pages |
Abstract
Let F(x):=(fij(x))i=1,â¦,p;j=1,â¦,q, be a (pÃq)-real polynomial matrix and let f(x) be the smallest singular value function of F(x). In this paper, we first give the following nonsmooth version of Åojasiewicz gradient inequality for the function f with an explicit exponent: For any xÌâRn, there exist c>0 and ϵ>0 such that we have for all âxâxÌâ<ϵ,inf{âwâ:wââf(x)}â¥c|f(x)âf(xÌ)|1âÏ,where âf(x) is the limiting subdifferential of f at x, d:=maxi=1,â¦,p;j=1,â¦,qdegfij, â(n,d):=d(3dâ3)nâ1 if dâ¥2 and â(n,d):=1 if d=1, and Ï:=1â(n+p,2d+2). Then we establish some versions of Åojasiewicz inequality for the distance function with explicit exponents, locally and globally, for the smallest singular value function f(x) of the matrix F(x).
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
SÄ©-Tiệp Äinh, Tiê´n-Són Phạm,