Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773842 | Journal of Complexity | 2017 | 22 Pages |
Abstract
We consider γ-weighted anchored and ANOVA spaces of functions with mixed first order partial derivatives bounded in a weighted Lp norm with 1â¤pâ¤â. The domain of the functions is Dd, where DâR is a bounded or unbounded interval. We provide conditions on the weights γ that guarantee that anchored and ANOVA spaces are equal (as sets of functions) and have equivalent norms with equivalence constants uniformly or polynomially bounded in d. Moreover, we discuss applications of these results to integration and approximation of functions on Dd.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
M. Gnewuch, M. Hefter, A. Hinrichs, K. Ritter, G.W. Wasilkowski,