Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5773896 | Journal of Differential Equations | 2017 | 32 Pages |
Abstract
In this paper, one-dimensional (1D) nonlinear wave equationuttâuxx+mu+u5=0 on the finite x-interval [0,Ï] with Dirichlet boundary conditions is considered. It is proved that, for any integer bâ¥2, there are many b-dimensional elliptic invariant tori, and thus quasi-periodic solutions for the above equation. This is an extension of the previous work [6] by the same authors, where b=2. The proof is based on infinite dimensional KAM theory and partial Birkhoff normal form.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Meina Gao, Jianjun Liu,