| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 5774506 | Journal of Mathematical Analysis and Applications | 2017 | 22 Pages | 
Abstract
												In this paper we study a class of hyperbolic variational inequalities without a term depending on the first order derivative. Results on existence, uniqueness and regularity of a solution to the variational inequality are provided through the Rothe method. A frictional dynamic contact problem for viscoelastic material with noncoercive viscosity and subdifferential boundary conditions is studied as an illustrative application.
											Related Topics
												
													Physical Sciences and Engineering
													Mathematics
													Analysis
												
											Authors
												Shengda Zeng, StanisÅaw Migórski, 
											