Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5774746 | Journal of Mathematical Analysis and Applications | 2017 | 17 Pages |
Abstract
Using the theory of analytic functions of several complex variables, we prove that if an analytic function in several variables satisfies a system of partial differential equations, then, it can be expanded in terms of the product of the bivariate Hermite polynomials. This expansion theorem allows us to develop a systematic method to prove the identities involving the bivariate Hermite polynomials. With this expansion theorem, we can easily derive, among others, the Mehler formula, Nielsen's formulas, Doetsch's formula, the addition formula, Weisner's formulas, Carlitz's formulas for the bivariate Hermite polynomials.
Related Topics
Physical Sciences and Engineering
Mathematics
Analysis
Authors
Zhi-Guo Liu,