Article ID Journal Published Year Pages File Type
5775384 Advances in Applied Mathematics 2017 32 Pages PDF
Abstract
Motivated by applications in local stereology, a new rotational Crofton formula is derived for Minkowski tensors. For sets of positive reach, the formula shows how rotational averages of intrinsically defined Minkowski tensors on sections passing through the origin are related to the geometry of the sectioned set. In particular, for Minkowski tensors of order j−1 on j-dimensional linear subspaces, we derive an explicit formula for the rotational average involving hypergeometric functions. Sectioning with lines and hyperplanes through the origin is considered in detail. We also study the case where the sections are not restricted to pass through the origin. For sets of positive reach, we here obtain a Crofton formula for the integral mean of intrinsically defined Minkowski tensors on j-dimensional affine subspaces.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,