Article ID Journal Published Year Pages File Type
5775466 Applied Mathematics and Computation 2018 12 Pages PDF
Abstract
Root-finders based on full linear multistep methods (LMMs) use previous function values, derivatives and root estimates to iteratively find a root of a nonlinear function. As ODE solvers, full LMMs are typically not zero-stable. However, used as root-finders, the interpolation points are convergent so that such stability issues are circumvented. A general analysis is provided based on inverse polynomial interpolation, which is used to prove a fundamental barrier on the convergence rate of any LMM-based method. We show, using numerical examples, that full LMM-based methods perform excellently. Finally, we also provide a robust implementation based on Brent's method that is guaranteed to converge.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,