Article ID Journal Published Year Pages File Type
5775526 Applied Mathematics and Computation 2018 8 Pages PDF
Abstract
In this paper, we investigate certain asymptotic series used by Hirschhorn to prove an asymptotic expansion of Ramanujan for the nth harmonic number. We give a general form of these series with a recursive formula for its coefficients. By using the result obtained, we present a formula for determining the coefficients of Ramanujan's asymptotic expansion for the nth harmonic number. We also give a recurrence relation for determining the coefficients aj(r) such that Hn:=∑k=1n1k∼12ln(2m)+γ+112m(∑j=0∞aj(r)mj)1/ras n → ∞, where m=n(n+1)/2 is the nth triangular number and γ is the Euler-Mascheroni constant. In particular, for r=1, we obtain Ramanujan's expansion for the harmonic number.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,