Article ID Journal Published Year Pages File Type
5775785 Applied Mathematics and Computation 2017 7 Pages PDF
Abstract
Lupaş q-analogues of the Bernstein functions play an important role in Approximation Theory and Computer Aided Geometric Design. Their collocation matrices are called Lupaş matrices. In this paper, we provide algorithms for computing the bidiagonal decomposition of these matrices and their inverses to high relative accuracy. It is also shown that these algorithms can be used to perform to high relative accuracy several algebraic calculations with these matrices, such as the calculation of their inverses, their eigenvalues or their singular values. Numerical experiments are included.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,