Article ID Journal Published Year Pages File Type
5775931 Applied Mathematics and Computation 2017 17 Pages PDF
Abstract
Let G be a simple undirected graph and Gσ be the corresponding oriented graph of G with the orientation σ. The skew energy of Gσ, denoted by εs(Gσ), is defined as the sum of the singular values of the skew adjacency matrix S(Gσ). In 2010, Adiga et al. certified that ɛs(Gσ)≤nΔ, where Δ is the maximum degree of G of order n. It has been shown that every 5-regular oriented graph with optimum skew energy has even neighborhood property, that is each pair of neighborhoods of a graph have even number of common vertices. In this paper, we characterize all connected 5-regular graphs of order n with this property. Moreover, we determine all connected 5-regular oriented graphs of order n with maximum skew-energy.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,