Article ID Journal Published Year Pages File Type
5776051 Journal of Computational and Applied Mathematics 2018 44 Pages PDF
Abstract
An important question when using deflation techniques is how to find good deflation vectors, which lead to a decrease in the number of iterations and a small increase in the required computing time per iteration. In this paper, we propose the use of deflation vectors based on a POD-reduced set of snapshots. We investigate convergence and the properties of the resulting methods. Finally, we illustrate these theoretical results with numerical experiments. We consider compressible and incompressible single-phase flow in a layered model with variations in the permeability layers up to 103 and the SPE 10 benchmark model with a contrast in permeability coefficients of 107. Using deflation for the incompressible problem, we reduce the number of iterations to 1 or 2 iterations. With deflation, for the compressible problem, we reduce up to ∼80% the number of iterations when compared with the only-preconditioned solver.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,