Article ID Journal Published Year Pages File Type
5776055 Journal of Computational and Applied Mathematics 2018 12 Pages PDF
Abstract
This paper proposes a method for a fast estimation of the largest eigenvalue of an asymmetric tridiagonal matrix. The proposed method is based on the Power method and the computation of the square of the original matrix. The matrix square is computed through a proposed fast algorithm designed specifically for tridiagonal matrices. Implementations for compressed column (CCS) and compressed row storage (CRS) formats are provided, discussed and compared to a standard scientific library. We investigate the roundoff numerical errors, showing that the proposed method provides errors no greater than the usual Power method. We provide numerical results with simulations in C/C++ implementation in order to demonstrate the effectiveness of the proposed method.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,