Article ID Journal Published Year Pages File Type
5776192 Journal of Computational and Applied Mathematics 2017 18 Pages PDF
Abstract
Systems of reaction-diffusion equations are commonly used in biological models of food chains. The populations and their complicated interactions present numerous challenges in theory and in numerical approximation. In particular, self-diffusion is a nonlinear term that models overcrowding of a particular species. The nonlinearity complicates attempts to construct efficient and accurate numerical approximations of the underlying systems of equations. In this paper, a new nonlinear splitting algorithm is designed for a partial differential equation that incorporates self-diffusion. We present a general model that incorporates self-diffusion and develop a numerical approximation. The numerical analysis of the approximation provides criteria for stability and convergence. Numerical examples are used to illustrate the theoretical results.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,