Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5776934 | Discrete Mathematics | 2017 | 9 Pages |
Abstract
For any positive integers a and b, we enumerate all colored partitions made by noncrossing diagonals of a convex polygon into polygons whose number of sides is congruent to b modulo a. For the number of such partitions made by a fixed number of diagonals, we give both a recurrence relation and an explicit representation in terms of partial Bell polynomials. We use basic properties of these polynomials to efficiently incorporate restrictions on the type of polygons allowed in the partitions.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Daniel Birmajer, Juan B. Gil, Michael D. Weiner,