Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5776946 | Discrete Mathematics | 2017 | 6 Pages |
Abstract
For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer N such that for any graph of order N, either G contains a copy of G1 or its complement contains a copy of G2. Let Cm be a cycle of length m and K1,n a star of order n+1. Parsons (1975) shows that R(C4,K1,n)â¤n+ânâ1â+2 and if n is the square of a prime power, then the equality holds. In this paper, by discussing the properties of polarity graphs whose vertices are points in the projective planes over Galois fields, we prove that R(C4,K1,q2ât)=q2+qâ(tâ1) if q is an odd prime power, 1â¤tâ¤2âq4â and tâ 2âq4ââ1, which extends a result on R(C4,K1,q2ât) obtained by Parsons (1976).
Related Topics
Physical Sciences and Engineering
Mathematics
Discrete Mathematics and Combinatorics
Authors
Xuemei Zhang, Yaojun Chen, T.C. Edwin Cheng,