Article ID Journal Published Year Pages File Type
5777059 Electronic Notes in Discrete Mathematics 2017 7 Pages PDF
Abstract

Consider the sum X(ξ)=∑i=1naiξi, where a=(ai)i=1n is a sequence of non-zero reals and ξ=(ξi)i=1n is a sequence of i.i.d. Rademacher random variables (that is, Pr[ξi=1]=Pr[ξi=−1]=1/2). The classical Littlewood-Offord problem asks for the best possible upper bound on the concentration probabilities Pr[X=x]. We study a resilience version of the Littlewood-Offord problem: how many of the ξi is an adversary typically allowed to change without being able to force concentration on a particular value? We solve this problem asymptotically, demonstrating an interesting connection to the notion of an additive basis from additive combinatorics. We also present several interesting open problems.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Discrete Mathematics and Combinatorics
Authors
, , ,