Article ID Journal Published Year Pages File Type
5778050 Topology and its Applications 2017 17 Pages PDF
Abstract
Inspired by a result of Kechris, we introduce the notion of a quasi non-archimedean group. We observe that full groups are quasi non-archimedean, and that every continuous homomorphism from an infinitesimally finitely generated group into a quasi non-archimedean group is trivial. We prove that a locally compact group is quasi non-archimedean if and only if it is totally disconnected, and provide various examples which show that the picture is much richer for Polish groups. In particular, we get an example of a Polish group which is infinitesimally 1-generated but totally disconnected, strengthening Stevens' negative answer to Problem 160 from the Scottish book.
Related Topics
Physical Sciences and Engineering Mathematics Geometry and Topology
Authors
, ,