Article ID Journal Published Year Pages File Type
5778162 Annals of Pure and Applied Logic 2017 20 Pages PDF
Abstract
Intensional logic programming is an extension of logic programming based on intensional logic, which includes as special cases both temporal and modal logic programming. In [13], M. Orgun and W.W. Wadge provided a general framework for capturing the semantics of intensional logic programming languages. They demonstrated that if the intensional operators of a language obey some simple semantic properties, then the programs of the language are guaranteed to have a minimum model semantics. One key property involved in the construction of [13] is the monotonicity of intensional operators. In this paper we consider intensional logic programming from a game-theoretic perspective. In particular we define a two-person game and demonstrate that it can be used in order to define a model for any given intensional program of the class introduced in [13]. Moreover, this model is shown to be identical to the minimum model constructed in [13]. More importantly, we demonstrate that the game is even applicable to intensional languages with non-monotonic operators. In this way we provide the first (to our knowledge) general framework for capturing the semantics of non-monotonic intensional logic programming.
Related Topics
Physical Sciences and Engineering Mathematics Logic
Authors
, , ,