Article ID Journal Published Year Pages File Type
5778458 Advances in Mathematics 2017 27 Pages PDF
Abstract
Subgroup lattices of solvable groups form another family of comodernistic lattices that were already proven to be shellable. We show not only that subgroup lattices of solvable groups are comodernistic, but that solvability of a group is equivalent to the comodernistic property on its subgroup lattice. Indeed, the definition of comodernistic exactly requires on every interval a lattice-theoretic analogue of the composition series in a solvable group. Thus, the relation between comodernistic lattices and solvable groups resembles, in several respects, that between supersolvable lattices and supersolvable groups.
Related Topics
Physical Sciences and Engineering Mathematics Mathematics (General)
Authors
, ,